New characterizations of quasi-unmixed, unmixed, and Macaulay local domains

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-lifting Macaulay-type formulae of generalized unmixed sparse resultants

Resultants are defined in the sparse (or toric) context in order to exploit the structure of the polynomials as expressed by their Newton polytopes. Since determinantal formulae are not always possible, the most efficient general method for computing resultants is as the ratio of two determinants. This is made possible by Macaulay’s seminal result [15] in the dense homogeneous case, extended by...

متن کامل

Resolution of Unmixed Bipartite Graphs

For an unmixed bipartite graph G we consider the lattice of vertex covers LG and compute depth, projective dimension and extremal Bettinumbers of R/I(G) in terms of this lattice.

متن کامل

Cohen-macaulay, Shellable and Unmixed Clutters with a Perfect Matching of König Type

Let C be a clutter with a perfect matching e1, . . . , eg of König type and let ∆C be the Stanley-Reisner complex of the edge ideal of C. If all c-minors of C have a free vertex and C is unmixed, we show that ∆C is pure shellable. We are able to describe in combinatorial terms when ∆C is pure. If C has no cycles of length 3 or 4, then it is shown that ∆C is pure if and only if ∆C is pure shella...

متن کامل

Equidimensional and Unmixed Ideals of Veronese Type

This paper was motivated by a problem left by Herzog and Hibi, namely to classify all unmixed polymatroidal ideals. In the particular case of polymatroidal ideals corresponding to discrete polymatroids of Veronese type, i.e ideals of Veronese type, we give a complete description of the associated prime ideals and then, we show that such an ideal is unmixed if and only if it is CohenMacaulay. We...

متن کامل

The resultant of an unmixed bivariate system

This paper gives an explicit method for computing the resultant of any sparse unmixed bivariate system with given support. We construct square matrices whose determinant is exactly the resultant. The matrices constructed are of hybrid Sylvester and Bézout type. The results extend those in [14] by giving a complete combinatorial description of the matrix. Previous work by D’Andrea [5] gave pure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1982

ISSN: 0021-8693

DOI: 10.1016/0021-8693(82)90026-6